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Summary 

A numerical scheme for the solution of the vertical boundary-layer equations in a two-dimensional horizontally 
heated cavity filled with a porous medium is described. A novel feature of the problem is that although the 
equations are parabolic, the core boundary conditions at the edge of the layer are not specified a priori. Instead 
the core stream function and temperature profiles must satisfy certain symmetry conditions requiring an iterative 
approach in the numerical scheme. The results confirm the possibility of the frequently assumed hypothesis in 
cavity flows that the vertical boundary layers empty into the core and thus complete the main flux circulfition in 
the cavity. The numerical results are compared with both asymptotic and approximate solutions of the equations. 

1. Introduction 

In a variety of high Rayleigh number cavity flows driven by horizontal heating, the 
vertical boundary layers play a key role in the completion of the circulation through the 
system. In the core region between the boundary layers..the initial assumption of a 
constant temperature flow [1] was revised in the context of a magneto-hydrodynamic 
system by Singh and Cowling [2] and later in the case of a Newtonian fluid by Gill [3]. 
These studies developed the notion of a horizontally stratified core in which the flow is 
also horizontal. Above the mid-level of the cavity the fluid is detrained by the boundary 
layer on the hot wall, crosses to the vertical boundary layer on the cold wall where it 
descends and is returned to the hot wall by an equal and opposite flow in the lower half of 
the cavity. Provided the boundary conditions on the upper and lower surfaces of the 
cavity are the same (and the physical properties of the fluid are constant), it may be 
assumed that the Solution of the system is "centro-symmetric" and the horizontal velocity 
and temperature profiles in the core can be found by consideration of the solution in just 
one of the vertical boundary layers. At the edge of the boundary layer the stream function 
and temperature profiles must possess appropriate properties of symmetry, but are not 
known a priori ,  being determined by the solution of the boundary-layer system, while at 
the ends of the layer it is generally assumed [2,3] that the stream function vanishes, so that 
the fluid rising or descending in the layer empties into the core, rendering the boundary 
layers on the horizontal walls relatively unimportant. These assumptions have led to 
various approximate solutions of the vertical boundary layer system. Singh and Cowling 
[2] used a Pohlhausen approach, while Gill [3] obtained approximate solutions in the 
Newtonian problem for the case of infinite Prandtl number by a modified Oseen method. 
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A similar method was used for the analogous problem in a porous medium by Weber [4], 
and more recently Blythe and Simpkins [5,6,7] have obtained approximate solutions to 
both the porous problem and the infinite Prandtl number Newtonian problem using an 
integral relations technique. Walker and Homsy [8] have also considered the porous 
problem and have obtained numerical solutions of the boundary-layer equations for 
various specified external temperature profiles using a trial and error method to determine 
a profile for which the resulting core stream function is symmetric. 

In the absence, then, of any exact solution to the vertical boundary layer problem, the 
present study attempts to provide an "exact" numerical solution of the equations for' the 
porous case in which the external temperature and stream function are obtained by an 
iterative technique. The convergence of the scheme appears to confirm the possibility of a 
solution in which the layer empties into the core, and also provides a comparison with the 
asymptotic structure of the solution at the ends of the layer, recently studied by Blythe, 
Daniels and Simpkins [9]. A correct analysis of this structure is vitally important for the 
consideration of the boundary layers on the horizontal walls, an investigation of which 
appears to be the only means of testing the validity of the conditions applied at the ends 
of the vertical layers. 

The governing equations and boundary conditions are stated in Section 2, along with 
the pertinent features of their asymptotic structure. This system is discretized using finite 
differences, and the parabolic equations are then solved by marching in the direction of 
forward flow in the layer; the final external temperature and stream function profiles are 
determined by an iterative technique which necessitates several sweeps of the layer. 
Details of the scheme are described in Section 3, and the results are compared with the 
asymptotic solutions of the equations in Section 4. 

2. Governing equations and asymptotic properties 

A steady convective roll is set up within a two-dimensional, porous, rectangular cavity of 
height h and width l by maintaining the vertical boundaries at different constant 
temperatures, T O and T 1 (T O < T 0. The Boussinesq equations governing the motion may be 
written in the form (see, for example, [7]) 

Off O~ 
- ~  + --3-~- = O, (2.1) 

O~ 3*/ Of (2.2) 
O~ O~ R O~ ' 

Of Of (2.3) 
v2T= a-O~ + ~ o-T' 

where 

i 32 32 
v 2 + - -  ( 2 . 4 )  O y  2 0_~ 2 ' 

(if, ~) are Cartesian co-ordinates non-dimensionalized with respect to the height of the 
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cavity, with origin at the base of the cold wall and (~, ~) are corresponding velocity 
components non-dimensionalized with respect to x /h  where x is the thermal diffusivity. T 
is the non-dimensional temperature in excess of T 0, scaled with respect to T~ - T 0. The 
two parameters of the problem are the aspect ratio, L, and the Darcy-Rayleigh number, 
R, defined by 

l kpagh(T,  - To) 
L =-fi, R -  , (2.5) 

where kp is the permeability, a is the coefficient of thermal expansion, g is the acceleration 
due to gravity and ~ is the kinematic viscosity. The present study is concerned with the 
solution at large Rayteigh numbers and finite values of L; multiple-cell solutions of the 
type found in large and small aspect ratio cavities are not considered. 

Appropriate boundary conditions on the vertical walls at ff = 0 and :g = L are 

ff = T =  0 (:2 = 0), (2.6) 

if= 0, T =  1 ( X = L ) ,  (2.7) 

and provided suitable conditions are chosen on the horizontal walls at z = 0 and z = 1, the 
equations and boundary conditions possess the centro-symmetric properties 

~(X,  £ ) =  ~ 7 ( L - X ,  1 - £ ) ,  (2.8) 

T(X, 2) = 1 - T ( L -  if, 1 - ~ ) ,  (2.9) 

where f is the stream function defined by ff = ~f /~£,  ~ = - 0 f / 0 f f .  
For large values of the Darcy-Rayleigh number, the solution consists of a parallel 

stratified shear flow 

f=R' /2~pc(~)  + . . . .  T =  rc(~ ) + . . .  (R >> 1) (2.10) 

between boundary layers of thickness O(R-1 /2 )  on each vertical wall. Near the cold wall 
:~ = 0 we write 

R1/2+(x, z) + . . . ,  T= 7"(x, z) + . . . .  

X = R - 1 / 2 x ,  2 = z ,  (2.11) 

to obtain the boundary-layer system 

Ou Ow Ow 3T OT OT O2T 
~ - - ~ + ~ = 0 ,  ~x a x '  u-~'x + w ~ z  ax z 

( O < z <  1, x > O )  (2.12) 

where u = O~/3z, w = - O~/Ox. At the wall the boundary conditions are 

u = T = 0  ( x = 0 )  (2.13) 
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while at the edge of the layer we require that the solution matches with that (2.10) in the 
core 

~p ~ q,c(z), T ~  Tc(z ) (x ~ oe), (2.14) 

where ~Pc and To, in view of the centro-symmetry relations (2.8), (2.9), must satisfy 

~p~(z) = ~Pc(1 - z), Tc(z) = 1 - To(1 - z).  (2.15) 

Conditions at the ends of the layer are taken to be 

~p(x, 0) = ~p(x, 1) = 0. (2.16) 

In the present paper we consider the numerical solution of the system (2.12)-(2.16). 
Asymptotic solutions at each end of the layer, consistent with (2.16), have been de- 
termined by Blythe, Daniels and Simpkins [9], and as z ---> 1 it is found that 

,p = (1 - z) ' /2 f (~)  + O(1 - z) ,  

T = g ( ~ ) + O ( ( 1 - z ) ' / 2 ) ,  ( z o  l - ) ,  (2.17) 

where ~ = x/(1 - z) 1/2, g = 1 _ f '  and f satisfies 

f ' "  + ½if" = 0, f (0 )  = 0, f ' (0 )  = 1, f ' (oo)  = 0. (2.18) 

The solution of this system has been determined in different contexts by Sakiadis [10], 
Howarth [11] and Singh and Cowling [12], and has the property 

f ( oe )  = a = 1.616...  (2.19) 

so that 

~ p ~ - a ( 1 - z )  1/2, T~- l - O ( ( 1 - z ) l / 2 ) ,  ( z ~  l - ) .  (2.20) 

The form of ~Pc near z = 1 and the symmetry conditions (2.15) dictate the structure of 
the solution near z = 0, where it is found (Blythe, Daniels and Simpkins [9]) that solutions 
of the form 

z  a(l exp( . . . .  

( z ~ O + , O < x < m ) ,  (2.21) 

i 
are uniformly valid to leading order across the layer, although higher-order terms are 
modified within an inner thermal layer of thickness x = O(zl/4). The value of the constant 
fl remains undetermined by the asymptotic analysis, although the higher-order corrections 
to the core temperature profile near z = 0 may be determined in terms of/3: 

T c - ~ z  1/2 .4_ 1.443t84/322/3 + 0 ( 7 , 7 / 9 ) ,  (2 ~ 0). (2.22) 
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The leading term generates the first correction to the solution (2.17) near z = 1 via the 
symmetry conditions (2.15), which also imply that 

~,~- az '/2 + O(z), (z --+ 0). (2.23) 

3. Discretization 

For the purpose of discretization, it is convenient to recast the system (2.12)-(2.16) using 
the transformations 

1 x = ~ X ,  z = ~ ( 2 - Z ) ,  ~'(x'z)=!'~(Z'X)'d 

to obtain the fundamental problem 

D21~ a0 0(I ) D0 

0X 2 0 X '  0X DZ 

¢ = 0 = 0  ( X =  0), 

• -~ ~ ( Z ) ,  O--'Oc(Z) 

where 

• c(Z) = ~,c(2 - Z ) ,  

and 

0(I ) D0 220 

0Z aX 0X 2'  

(X--+ ~ ) ,  

• (0, x )  = ~ ( 2 ,  x )  = o. 

r ( x ,  z)  = o(z, x), 

(3.1) 

0~ (z )  = 1 - o~(2 - z )  

(3.2) 

(3.3) 

(3.4) 

(3.5) 

so we write 

~b = ~'A(~, 7) ,  dgc = ~'A¢(~'), 

0 = B(~, 7),  0c = B~(~) (3.7) 

where 

= z ' / 2 ,  7 = x / z  ~/~. (3.8) 

We also define 

OA 0B 
C = - -  D = - - .  (3.9) 

07 ' 07 

The entire layer 0 < Z < 2, X > 0 is now divided into two parts, 0 < Z < 1 (region I) and 
1 < Z < 2 (region II) and a different discretization is used in each region. 

In region I we must cater for the initial development in the similarity form (2.17) and 

(3.6) 
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We shall assume that for Z < 1, Oc(Z) is a known function so that the equations (3.2) may 
now be written in the form 

B = B  c -  C, (3.10) 

~)D I.c~)B ( 3A ) (3.11) 0rl = ~" - ~  - ½D A + ~'--~- . 

The initial conditions at ~" = 0 are 

A(0, r/) = f ( r / ) ,  C(0, ~ / )=f ' ( r / ) ,  a(o ,  , )  = g(r/) ,  D(0 ,  r/) = g'(r/),  

(3.12) 

where f and g are defined by (2.17) and (2.18). 
The set of equations (3.9-3.11) now contains only first derivatives and is discretized in 

the domain 0 ~< 7/~< r/l, 0 ~< ~ ~< 1 using central differences in both the r/and ~ directions to 
obtain 

h 
Ai+i - Ai - -~(Ci  + Ci+l)=O 

Bi+ 1 - B i - h  (D i+ Di+l) = 0 

Bi + Ci - B~ = O 

( i = 0 ,  1 . . . .  I - 1 ) ,  

( i = 0 ,  1 , . . . I ) ,  

- -  h 

Dr+1 + Di+l-  D i - D i - - 3 ~ ( ( ~  + ~)( Ci + ~ + Ci+1-~+1 ) 

X(BrrBi+l-l~i-Bi+l)-(Oi~-Oiq-Oi+l-{-/~/+ 1 ) 

X [(A i + A i + l ) ( k + ~ + ~ ) +  (Ai + A ~ ' + l ) ( k - ~ - ( ) ] ) = O  

(3.13) 

Equations (3.9) and (3.10) are centred on the current mesh values (~', r/i) while (3.11) is 
centred between these and the previous mesh values ((, r/r); function values at the latter 
points are assumed known and denoted by an overbar. The step lengths in the f andr/  
directions are k and h respectively, with f = ( +  k, r/i+1 = r/i -~- h. The boundary conditions 
(3.3), (3.4) become 

A o = B o = O, B 1 = B C (3.14) 

so that (3.13), (3.14) consist of 4(1 + 1) equations for the 4(1 + 1) unknowns At, Br, Cr, D r 
(i = 0 . . . .  1). Newton iteration is used to find the solution at each ~ step, providing a linear 
matrix equation for the corrections to the previous estimate of the solution, the initial 
guess being taken as the solution at the previous ~ step. The matrix is of dimension 
4(1 + 1) × 4(1 + 1) but may be arranged in a form in which there are just four non-zero 
diagonals either side of the main diagonal and is easily solved by a standard Gaussian 
elimination for a banded system. 
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The solution in the first half of the layer may now be computed forward from the initial 
profile (3.12) to the centre of the layer Z = 1, provided that the external temperature field 
O~(Z), (Z < 1), is supplied. This is guessed initially and region I solved to obtain a 
corresponding stream function @~(Z)= ~A¢(~). The symmetry condition (3.5) requires 
that @~(2 - Z)  = ¢bc(Z ) so that in region II we follow an inverse procedure, specifying the 
symmetric continuation of the core stream function and obtaining a temperature profile 
OAZ), (Z > 1). 

This procedure suggests the following discretization in region II: 

• = ~.~(~, x) ,  , c=  ~ ( g ) ,  
o = ~ ( L  x),  oc = ~c(~) (3.15) 

where 

~=  ( 2 - Z )  '/2 (0~<~< 1), (3.16) 

and we specify 

Ac(~)=A~(~) ,  (0~<~<1) .  (3.17) 

Note that the transformation (3.16) is necessary since A C is known only at mesh values of 
in (3.17) which now correspond to appropriate mesh values of ~. However, the lateral 
co-ordinate is now taken as X in view of the asymptotic form (2.21), which also suggests 
that/~ should be a linear function of g as ~ ~ 0. We define 

~= 0A b = ~°--r-~ (3.18) 
OX' OX 

and equations (3.2) become 

0d 
b = - ~ ~---~, (3.19) 

~ - 2  ~'c__o~. + ~b A + ~'-~- . (3.20) 

These are again of first-order and are discretized using central differences in both the 
and X directions. The external boundary conditions are taken as 

d ~ d c ( ~  ), D--->O (X--* oo), (3.21) 

the extra condition being required since the unintegrated form (3.19) of the momentum 
equation is used, the core temperature profile now being unknown but allowed to depend 
on ~ by the second condition in (3.21). Solutions were also computed with this condition 
replaced by C -~ 0 as X-~ ~ but this was found to have an insignificant effect on the 
results. The wall conditions are 

.4(~, 0 )= /}(~ ,  0 ) = 0  (3.22) 
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Figure 1. Schematic diagram of the mesh pattern in the Z, X plane. 

and the initial conditions at ~ = 1 are 

.4(1, X ) = A ( 1 , X ) ,  [~(1 ,X)=B(1 ,  X),  

C(1, X) = C(1, X),  /)(1, X) = D(1, X).  (3.23) 

Here the switch between the two meshes is made particularly simple by use of the 
streamwise variable Z. At Z = 1, we have 7/= X / Z  1/2 = X so that the mesh points across 
the layer in region I automatically coincide with equally spaced points in X across region 
II (see Fig. 1). The step length in ~ must be taken as k. The discretization of (3.17)-(3.23) 
is now completed in a similar fashion to that of region I to obtain 4(I  + 1) equations for 
the 4(I  + 1) unknowns -di, Bi, Ci, Di (i = 0 .. . .  1) at each ~ step (the extra boundary 
condition in (3.21) replaces the equation in (3.13) corresponding to the value i = 1, which 
is now inadmissible in (3.19)). The Newton iteration may again be reduced to the solution 
of a nine-band matrix of dimension 4(1 + 1) X 4(1 + 1). 

The solution is now computed from ~ = 1 to ~ = 0 and determines the external 
temperature profile 

Oc(Z)=BI=B~(~) ( l < Z < 2 ) .  (3.24) 

Since Ac(O)=O it follows from (3.17) that .d¢(~)~ 0 as ~ 0 and this automatically 
ensures that B~(f) ---, 0 as ~ ~ 0. 

The solution so computed does not generally satisfy the final constraint on the 
problem, which requires that the external temperature field satisfies the anti-symmetry 
condition 

= 1 - (0  1) .  ( 3 . 2 5 )  

This is achieved by applying the iterative procedure 

Bc(~) = rBc(~) + (1 - r)(1 - B¢(~')), (0 ~< ~" ~< 1), (3.26) 

to obtain a new estimate for the core temperature field in the first half of the layer. The 
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profiles B~ a n d / ~  on the right hand  side of (3.26) are the values pertaining to the previous 
sweep of the layer, and r is introduced as a relaxation factor. 

4. Numerical results 

Before implementing the iterative scheme, the program was checked by applying the 
external temperature profile 0 c = 1 for all 0 < Z < 2, replacing the conditions (3.21) in 
region II  b y / }  ---) 1 and C ---) 0 as X---) ~ .  Step sizes of h = 0.2, k = 0.02 and an outer 
boundary  at ~/i = 20 and X 1 = 20 were used, and on each downstream step the Newton  
iteration was required to converge to within a tolerance of  10 -7. The similarity solution 
was successfully reproduced,  the solution in region I remaining effectively unaltered f rom 
the initial profile, and in region II  values of  the stream function and temperature being 
given accurately to at least three decimal places. A second test run was performed using a 
different external temperature profile, 0 c = 1 - ½Z 1/2, ( Z  < 1), 0 C = ½(2 - Z )  1 / 2 ,  ( Z  > 1), 
and this generated an asymmetric stream function profile, as in the numerical  experiments 
of  Walker and H o m s y  [8]. 

The iterative scheme was now implemented,  using the same external temperature 
profile in Z < 1 : 

Be=  1 - ½ ~  (0~<;~< 1), (4.1) 

and a relaxation factor  of r = 0.3. The resulting core stream function in 0 < Z < 1 is 
shown by the broken curve in Fig. 2. The symmetric cont inuat ion of  this is now imposed 
in region II  and generates the core temperature profile also shown by  a broken curve in 
Fig. 2. The correction feeds back into the system in region I via the iterative relation 
(3.26). After  just  one additional sweep of the layer, both  (I) c and 0 C are sufficiently close to 
the final profiles shown by the continuous (heavy) curves in Fig. 2 as to be almost 
indistinguishable on the scale of  the drawing. Details of  the  convergence rates are given in 
Table 1. The iterative scheme was in fact cont inued until the temperature profile satisfied 

1 

0.5 

0 1 2 
Z 

Figure 2. The first sweep of the layer for initial profiles: (i) 8 c = 1 -1Z1/2 (Z < 1) (broken lines), and (ii) 0 c = 1 
1 (Z < 1) (unbroken lines), showing the stream function and temperature profiles ~c and 8c. The final - ~ Z  

converged state (heavy lines) is also shown. 
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Table 2 
Results for varying step-sizes and outer boundaries compared with previous approximate solutions 
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h k ~s XI ~c(½) T~(½) 

0.1 0.02 30 30 0.73536 0.7515 
0.2 0.02 30 30 0.73564 0.7518 
0.2 0.01 30 30 0.73562 0.7521 
0.2 0.02 20 20 0.73562 0.7522 
0.2 0.01 30 50 0.73562 0.7523 

Walker and Homsy [8] 0.733 0.75 
Weber [4] 0.87 0.67 
Simpkins and Blythe [7] (profile (c)) 0.734 0.726 

the condition of anti-symmetry to within a tolerance of 10 -6. This was achieved in ten 
iterations. The Newton iteration on each downstream step typically required between 
three and five solutions of the matrix equation. The gradients dd~c/dZ and dOc/dZ 
automatically become continuous at the mid-point Z = 1 as the system converges. 

Various tests were made to investigate both the convergence and accuracy of the 
scheme and some of the results are summarized in Table 2. The rate of convergence was 
fairly insensitive to the value of the relaxation factor and although values of r = 0.2 and 
r = 0.5 were tested, the original value of 0.3 appeared to be slightly preferable. Provided 
the initial temperature profile satisfies 0c(1 ) = 1, (3.26) implies that subsequent profiles 
also satisfy this condition. The linear form Be = 1 - ½Z = 1 - 1~2 was also used as an 
initial profile in 0 ~< f ~< 1, the first sweep of the layer producing the continuous (light) 
curves shown in Fig. 2 with convergence following equally rapidly. 

The final results are summarized, in terms of the original variables +(x,  z) and T(x, z), 
in Table 3 and Figs. 3-5. For most runs the outer boundary was taken at ~/i = X1 = 30, the 
relatively large value being required because the layer thickens appreciably as the fluid 
approaches, and turns, the corner at Z = 2. Although the asymptotic result (2.21) shows 
that the thickness of the layer is finite at Z = 2, the scale of decay is x ~ aft-1 and it 
emerges that fl is small. In order to achieve a good comparison with the asymptotic results, 
and to determine the unknown constant fl, a run was made with k = 0.01, h = 0.2 and an 

Table 3 
Final values of the core stream function and temperature extrapolated from the numerical results 

0 0 1 
0.1 0.112 0.972 
0.2 0.220 0.937 
0.3 0.321 0.897 
0.4 0.415 0.854 
0.5 0.500 0.806 
0.6 0.576 0.754 
0.7 0.640 0.698 
0.8 0.690 0.637 
0.9 0.723 0.572 
1 0.735 0.5 
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Figure 3. Temperature and stream function profiles across the layer at various values of ~ and g. 
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Figure 4. Isotherms in the boundary layer at intervals of 0.1. 
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Figure 5. Streamlines in the boundary layer at intervals of 0.1. 
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Figure 6. Comparison of the computed solution for the core temperature profile J~c approaching g = 0 (dots) and 
the asymptotic formula (4.2). 
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Figure 7. Comparison of the computed stream function (e) and temperature (O) profiles across the layer at 
= 2 x 10 -s, and the asymptotic formulae (2.21) with fl/v/2 = 0.191 and a = 1.616. 

outer  bounda ry  in region II  at X I = 50. In addition, much  smaller step-sizes in the ~ and 
directions were taken near  ~ = 0 and ff = 0, leading to the results shown in Figs. 6 and 7. 
F r o m  (2.22) we expect that  as ~ ~ 0, 

J 

Bc- f l  ~+ l.443(-~2 )4/3~4/3+ (4.2) 
V / ~  . . . .  

F r o m  Fig. 6 it is est imated that  

fl =0.19(1). (4.3) 

With fl/v/2 = 0.191, the coefficient of the second term in (4.2) is 0.159 which should be  
compared  with the value 0.166 obta ined  f rom the numerical  solution, i.e. the gradient  of 
the line in Fig. 6. The  influence of the higher-order  terms in (4.2) can also be seen f rom 
Fig. 6. The s t ream function and tempera ture  profiles across the layer at the penul t imate  
value of ~ are consistent with (4.3) and the exponential  profile (2.21) (see Fig. 7). 

5. D i s c u s s i o n  

A compar i son  of the core profiles with the results of  the various approx imate  methods  is 
shown in Fig. 8. The agreement  with the previous numerical  solution of Walker  and 
H o m s y  [8] is good throughout  most  of  the layer, except near  the ends at z = 1 and z = 0 
where the fo rm of the external profile assumed by  Walker  and H o m s y  explicitly excludes 
the correct asymptot ic  behavior  (2.21). The main  advantage  of the present  me thod  is that  
the correct solution can be obta ined to extremely good accuracy in just  one or  two sweeps 
of  the layer. This is par t ly  because the core tempera ture  profile is known to satisfy 
To(1 ) = 1 and Tc(½) = ½ and so a reasonable  initial est imate of its fo rm in ½ < z < 1 can be 
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Figure 8. Comparison of the computed core stream function and temperature profiles with previous approximate 
solutions and the experimental results of Klarsfeld [13]. 

made. However, the success of the method is probably due to the way in which the scheme 
of iteration reflects the asymptotic composition of the layer. At the hot end, the flow, and 
the asymptotic solution (2.17), is forced by the external temperature field T c - 1. This 
generates a core stream function ~c = O ( ( 1 -  z) L/2) which, via the symmetry relations 
(2.15), generates the temperature field, and the asymptotic solution (2.21), at the cold end. 
In essence, the same procedure is followed in the numerical scheme. 

The main result of the present work is the determination of the boundary-layer 
constant /3 in (4.3) since it seems unlikely that previous approximate theories, or the 
numerical approach of Walker and Homsy [8], can provide an accurate estimate of its 
value. The importance of the value of the constant/3 is that it plays a crucial role in the 
determination of the thickness of the boundary layers on the horizontal walls of the cavity. 
Indeed, it emerges [14,15] that the width of these layers is such as to have a considerable 
influence on the range of validity of the overall boundary-layer structure in the cavity at 
high Rayleigh numbers. 

Finally, the heat transfer characteristics of the cavity are usually expressed in terms of a 
Nusselt number 

1 0 Z  :7=0 Rl/2f01 O~ x=O Nu = f0 --~ d Z -  dz (5.1) 

which from the numerical solution is calculated to be 

N u -  R'/20.51(5), (R >> 1). (5.2) 
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